Reg. No.:		

Question Paper Code: 20975

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2023.

Third Semester

Electrical and Electronics Engineering

EE 3302 — DIGITAL LOGIC CIRCUITS

(Common to PTEE 3302 for B.E. (Part-Time) First Semester – Regulations 2023)

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. State advantages and disadvantages of TTL.
- 2. Find the octal equivalent of hexadecimal number (2F.C4)₁₆.
- 3. Simplify the given Boolean expression. $(AB + CD) \cdot [(\overline{A} + \overline{B}) \cdot (\overline{C} + \overline{D})].$
- 4. Draw the circuit of the half subtractor and write its truth table.
- 5. Define race around condition.
- 6. State the rules for state assignment.
- 7. What are the drawbacks in designing asynchronous sequential logic circuit?
- 8. Why the input variables to a PAL buffered?
- 9. What is data flow modelling in VHDL?
- 10. Write the VHDL code for a logic gate which gives high output only when both the inputs are high.

PART B - (5 × 13 = 65 marks)

- 11. (a) (i) How can the expression, Y = (A + B).C be implemented using NAND gates? (5)
 - (ii) Perform addition for (205+569) using BCD addition.

(4)

(iii) Convert the decimal numbers (31)10 and (2,988)10 into hexadecimal.

(4)

Or

- (b) (i) Draw the MOS logic circuit for NOT gate and explain its operation. (7)
 - (ii) Compare Totem pole and Open collector outputs

(6)

- 12. (a) (i) Minimize the fundamental product of sums expression $Y = \left(A + \overline{B} + C\right) \cdot \left(\overline{A} + B + C\right) \cdot \left(\overline{A} + B + \overline{C}\right) \cdot \left(\overline{A} + \overline{B} + C\right) \cdot \left(\overline{A} + \overline{B} + \overline{C}\right)$ first using Boolean algebra and then by using a Karnaugh map. Then draw the circuit which implements the minimized form of Y. (9)
 - (ii) Simplify the logic function F in the two following cases:
 - (1) $F(A, B, C) = \min(1, 3, 4, 7)$
 - (2) $F(A,B,C) = \min(1, 3, 4, 7) + x(2,5)$, where the don't care terms are represented by x. (4)

Or

- (b) (i) Implement the product-of-sums Boolean function expressed by π (1, 2, 5) by a suitable multiplexer. (8)
 - (ii) Implement the function using decoder $F (p, q, r, s) = \sum (0, 1, 2, 4, 7, 10, 11, 12).$ (5)
- 13. (a) For the specified state diagram shown in Figure 1 design a synchronous sequential circuit using D-FF. (13)

Figure 1

Or

- (b) Design a synchronous mod 12 counter using NAND gates and T flip-flops. (13)
- 14. (a) Analyze the pulse mode circuit shown in figure 2 and derive its flow table. Also plot its state diagram. (13)

Figure 2

Or

	(b)	(i)	Implement the following using PROM.	9)	
			$A(X,Y,Z) = \sum_{Max} (1,2,4,6)$		
			$B(X, Y, Z) = \sum_{Max} (0, 1, 6, 7)$		
			$C(X,Y,Z) = \sum_{Max} (2,6)$		
		(ii)	What is a Hazard? Brief on its types.	4)	
15.	(a)	(i)	Write a VHDL program for 1 to 4 Demux using dataflow modelling (g. (8)	
		(ii)	Write short notes on built - in operators used in VHD)L (5)	
			programming.	9)	
			Or		
	(b)	Exp	lain in detail the RTL design procedure. (1	3)	
			PART C — $(1 \times 15 = 15 \text{ marks})$		
16.	(a)	Obta	ain a set of prime implicants for the Boolean expression. (1	5)	
		f = 1	Σ_{Max} (0, 1, 6, 7, 8, 9, 13, 14, 15) using a table method.		
			Or		
	(b)	(i) Design a BCD adder circuit capable of adding BCD equivalents of two-digit decimal numbers. Indicate the IC type numbers used if the design has to be TTL logic family compatible. (11)			
		(ii)	For the given Boolean expression, $Y = \overline{(A \cdot B) + (C \cdot D)}$. Draw the circuit and write the truth-table.	he (4)	